A Hybrid Model for Thyroid Disease Classification Using Evolutionary Multivariate Kernal SVM Prediction Method

نویسنده

  • Santhosh Baboo
چکیده

Thyroid diseases are widespread worldwide. In India too, there is a significant problems caused due to thyroid diseases. Various research studies estimates that about 42 million people in India suffer from thyroid diseases. There are a number of possible thyroid diseases and disorders, including thyroiditis and thyroid cancer. This paper focuses on the classification of two of the most common thyroid disorders are hyperthyroidism and hypothyroidism among the public. The National Institutes of Health (NIH) states that about 1% of Americans suffer from Hyperthyroidism and about 5% suffer from Hypothyroidism. From the global perspective also the classification of thyroid plays a significant role. The conditions for the diagnosis of the disease are closely linked; they have several important differences that affect diagnosis and treatment. The data for this research work is collected from the UCI repository which undergoes pre-processing. The pre-processed data is multivariate in nature. Curse of Dimensionality is followed so that the available 21 attributes is optimized to 10 attributes using Hybrid Differential Evolution Kernel Based SVM algorithm. The subset of data is now supplied to Support Vector Machine (SVM) classifier algorithm where Radial Basis Function Kernal (RBF) is used. In order to stabilize the errors this iterative process takes 30 runs and the data is classified. The accuracy of classification is observed to be 67.97%. This result is average when compared to our previous work that used the Kernel based Naïve bayes classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM

The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...

متن کامل

A Novel Fuzzy-Genetic Differential Evolutionary Algorithm for Optimization of A Fuzzy Expert Systems Applied to Heart Disease Prediction

This study presents a novel intelligent Fuzzy Genetic Differential Evolutionary model for the optimization of a fuzzy expert system applied to heart disease prediction in order to reduce the risk of heart disease. To this end, a fuzzy expert system has been proposed for the prediction of heart disease. The proposed model can be used as a tool to assist physicians. In order to: (1) tune the para...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

APPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES

An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the ...

متن کامل

Intelligent application for Heart disease detection using Hybrid Optimization algorithm

Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017